国产在线精品第一区二区,国产精品不卡一区二区,国产又粗又黄又爽的大片,国产兽交xvidseos视频,国产亚洲精品美女久久久

AI技術(shù)驅(qū)動制藥產(chǎn)業(yè)轉(zhuǎn)型升級

  • 2025-04-06 23:31
  • 作者:王凱旋 韓世通 陳竹
  • 來源:中國醫(yī)藥報

近期,隨著ChatGPT、DeepSeek等人工智能大模型的飛躍式發(fā)展,AI制藥再次成為行業(yè)焦點。


AI制藥是指將機器學習、深度學習、自然語言處理和大數(shù)據(jù)等人工智能技術(shù)與傳統(tǒng)制藥環(huán)節(jié)相結(jié)合,通過從頭生成、虛擬篩選和數(shù)據(jù)交叉比對等方式,提升新藥研發(fā)效率的制藥方式。


AI制藥基于靶點發(fā)現(xiàn)和驗證、候選化合物發(fā)現(xiàn)等傳統(tǒng)藥物發(fā)現(xiàn)流程,在深度學習和強化學習等方法加持下,對虛擬篩選和從頭分子生成起到關(guān)鍵作用。


投融資活躍度曲折上升


傳統(tǒng)制藥成本高、耗時長,藥物發(fā)現(xiàn)難度日益增加。按照行業(yè)普遍規(guī)律,一款新藥從最開始的藥物發(fā)現(xiàn)到最終上市,平均耗時超過10年,投入超過10億美元。在傳統(tǒng)藥物發(fā)現(xiàn)階段,先導(dǎo)化合物結(jié)構(gòu)設(shè)計高度依賴研究人員的經(jīng)驗,篩選失敗率高。根據(jù)Frost& Sullivan(弗若斯特沙利文)統(tǒng)計數(shù)據(jù),從靶點到苗頭化合物篩選,再到先導(dǎo)化合物優(yōu)化,藥物發(fā)現(xiàn)的整體成功率為51%。近年來,隨著常見蛋白質(zhì)或通路幾乎被開發(fā)完全,使用傳統(tǒng)方法找到新分子的難度越來越大。


相較傳統(tǒng)的新藥開發(fā)需要大量資金投入和長時間試驗,機器學習、深度學習、生成式AI等AI技術(shù)可以快速學習海量數(shù)據(jù),通過重新設(shè)計分子、預(yù)測蛋白質(zhì)結(jié)構(gòu)等方式,顯著提升新藥研發(fā)效率和質(zhì)量,降低制藥過程中每個步驟的失敗率和研發(fā)成本。


AI制藥最早可以追溯到20世紀興起的計算機輔助藥物設(shè)計。1966年,分子生物學家賽勒斯·利文索爾將計算機模擬與分子圖像相結(jié)合,實現(xiàn)了蛋白質(zhì)和核酸結(jié)構(gòu)可視化,標志著計算機輔助藥物設(shè)計的開始。近年來,隨著數(shù)據(jù)、算法和新技術(shù)的不斷產(chǎn)生,“AI+制藥”快速發(fā)展。AlphaFold2的發(fā)布以及ChatGPT對AI領(lǐng)域的刺激,帶動AI制藥行業(yè)的投融資熱情。雖然近年醫(yī)藥行業(yè)整體投融資遇冷,但AI制藥的投融資活躍度在2016—2023年整體呈現(xiàn)曲折上升趨勢。


市場空間有望擴展


目前,AI技術(shù)對新藥研發(fā)的賦能主要體現(xiàn)在逐步遞進的三個層次,即“研發(fā)效率提升—臨床試驗成功率提升—制藥范式改變”,從而創(chuàng)造更多市場空間。


研發(fā)效率提升方面,根據(jù)Statista數(shù)據(jù),2023年,全球制藥行業(yè)研發(fā)總支出超過3000億美元,其中藥物發(fā)現(xiàn)和臨床前研究占比約為25%,市場規(guī)模為800億美元。目前,多數(shù)頭部AI制藥企業(yè)可以將藥物發(fā)現(xiàn)效率提升50%以上,有足夠的動力將現(xiàn)有藥物發(fā)現(xiàn)流程逐步AI化。同時,AI技術(shù)可輔助找到更多新的藥物靶點和成藥分子,擴容藥物發(fā)現(xiàn)和臨床前市場。按照滲透率50%估算,預(yù)計AI制藥在研發(fā)效率提升方面的遠期市場空間在400億美元以上。


臨床試驗成功率提升方面,根據(jù)IQVIA(艾昆緯)統(tǒng)計數(shù)據(jù),目前,新藥從臨床前分子研究到通過臨床試驗最終上市,成功率僅為10%。2023,全球藥物臨床試驗市場規(guī)模約為1500億美元,而創(chuàng)新藥市場規(guī)模已達到10000億美元。僅按照AI技術(shù)將臨床試驗成功率提升10%計算,仍可在現(xiàn)有研發(fā)管線基礎(chǔ)上獲得多1倍的新藥數(shù)量。此外,由于臨床試驗費用中有相當高的部分屬于失敗成本,成功率的提高還將顯著減少損失。綜合估算,AI制藥在臨床試驗成功率提升方面的遠期市場空間在1000億美元左右。


制藥范式改變方面,遠期來看,AI制藥有望徹底改變制藥范式,推動藥物從傳統(tǒng)制劑(口服制劑和注射劑)向細胞、基因療法、動態(tài)藥物轉(zhuǎn)變。


——個性化精準治療。未來,AI制藥有望通過對癌細胞樣本的快速高精度表型分析,實現(xiàn)超高速的藥物開發(fā),并在癌細胞發(fā)展的不同階段進行連續(xù)個性化精準治療,實現(xiàn)對癌細胞的實時抑制和清除。這將對癌細胞實現(xiàn)控制,加快人類攻克癌癥的進程。


——動態(tài)蛋白質(zhì)藥物。如今,AI技術(shù)已經(jīng)在蛋白質(zhì)折疊預(yù)測中展現(xiàn)出良好表現(xiàn),未來有望用于設(shè)計可在不同環(huán)境下改變構(gòu)象的動態(tài)蛋白質(zhì)藥物。例如,通過AI訓練模型預(yù)測蛋白質(zhì)在特定生理條件下的功能改變情況,開發(fā)具備動態(tài)響應(yīng)能力的藥物。


——新型基因治療。AI模型可以分析人體內(nèi)實時的基因表達或環(huán)境信號,自動啟動或關(guān)閉某些關(guān)鍵基因。可編程藥物能夠動態(tài)響應(yīng)疾病狀態(tài)的變化,在不同階段激活或抑制不同基因,提供更精準的基因治療。


根據(jù)IQVIA《2023年全球藥品支出回顧和展望》,2030年,全球醫(yī)藥市場規(guī)模將突破20000億美元。按照20%的滲透率計算,大量未被滿足的臨床需求和現(xiàn)有藥物優(yōu)化將帶來更多增量,AI制藥在制藥范式改變方面的市場空間預(yù)計在4000億美元以上。


聚焦研發(fā)早期階段


目前,AI制藥仍在傳統(tǒng)制藥框架下進行,主要集中在藥物發(fā)現(xiàn)和臨床前研究兩個階段,涉及靶點發(fā)現(xiàn)和驗證、候選化合物發(fā)現(xiàn)、ADMET(藥物吸收、分配、代謝、排泄和毒性)預(yù)測,以及制劑、晶型設(shè)計等。


靶點發(fā)現(xiàn)是新藥發(fā)現(xiàn)中的關(guān)鍵步驟,識別正確的藥物靶點對于開發(fā)臨床有效療法至關(guān)重要。傳統(tǒng)制藥的靶點識別主要分為實驗、多組學方法和計算方法;AI通過分析和整合不同來源、種類繁多、結(jié)構(gòu)各異的信息,協(xié)助科研人員深入理解疾病的成因。例如,AI能夠從免疫反應(yīng)、信號傳導(dǎo)路徑和蛋白質(zhì)結(jié)構(gòu)等不同層面,識別出潛在治療目標和關(guān)鍵生物途徑。此外,AI還能夠構(gòu)建藥物與疾病之間相似性和聯(lián)系的參考網(wǎng)絡(luò),幫助研究人員發(fā)現(xiàn)合適的治療目標。一旦確定了這些目標,AI可以建立相應(yīng)生物學模型,為后續(xù)藥物篩選工作奠定基礎(chǔ)。相較傳統(tǒng)制藥模式已知靶點和疾病模型的局限性,AI在搜索的廣度上遠超科研人員經(jīng)驗,有助于提高創(chuàng)新靶點發(fā)現(xiàn)的可能性。


虛擬篩選和化合物生成是AI發(fā)現(xiàn)候選化合物的主要手段,AI制藥可為從苗頭化合物生成和篩選到臨床前候選藥物生成和篩選全流程賦能。


候選化合物發(fā)現(xiàn)是指針對特定靶點生成具有一定藥理活性或生物活性的化合物分子,并通過逐步篩選和修飾最終得到具有高開發(fā)價值、可以推進到臨床試驗階段的化合物。該過程包括苗頭化合物、先導(dǎo)化合物以及臨床前候選化合物的生成和篩選。


在苗頭化合物生成和篩選環(huán)節(jié),AI可通過深度學習,依據(jù)QSAR/QSPR(量化構(gòu)效/構(gòu)性關(guān)系分析)等基礎(chǔ)理論,以量子力學的精確度對候選分子庫中的小分子開展計算模擬,然后進行評分和篩選。例如,晶泰控股開發(fā)了一種結(jié)合AI和計算化學識別苗頭化合物的工作流程,得到了116個靶向PI 5P4K-β的候選化合物。


先導(dǎo)化合物生成和篩選是藥物設(shè)計的核心環(huán)節(jié)。在此環(huán)節(jié),苗頭化合物需要經(jīng)過基團替換、骨架躍遷等方法,并通過DMTA(設(shè)計—合成—測試—分析)的反復(fù)循環(huán)來提升生物活性和成藥性等,進而生成先導(dǎo)化合物。采用傳統(tǒng)方法,先導(dǎo)化合物的設(shè)計和優(yōu)化高度依賴科研人員經(jīng)驗,需要耗費大量的人力和資源。雖然計算機輔助藥物設(shè)計可以通過部分模擬DMTA循環(huán),加速先導(dǎo)化合物活性優(yōu)化過程,并實現(xiàn)高精度的結(jié)果預(yù)測,但需要耗費較多計算資源,且配置與體系搭建過程復(fù)雜,限制了其在先導(dǎo)化合物生成和篩選中的應(yīng)用。AI制藥通過深度學習和端到端化合物生成的方法,有望開發(fā)出兼顧速度、精度與易用性的先導(dǎo)化合物活性優(yōu)化方法。例如,中國科學院上海藥物研究所科研人員提出了一種先導(dǎo)化合物優(yōu)化的人工智能方法PBCNet,采用孿生圖卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)來預(yù)測相對結(jié)合親和力。


在臨床前候選藥物生成和篩選環(huán)節(jié),優(yōu)化后的化合物分子將進行物化性質(zhì)預(yù)測,并在細胞中驗證后進一步優(yōu)化。臨床前研究和臨床研究需在動物和人體中測評藥物效果,為降低后期效果差異可能導(dǎo)致的研發(fā)失敗風險,此環(huán)節(jié)通常會引入ADMET性質(zhì)預(yù)測模型,同時結(jié)合動物和人體試驗特性預(yù)測相關(guān)指標。由于藥物發(fā)現(xiàn)階段主要依賴細胞模型或活體細胞實驗,與動物和人體試驗結(jié)果可能存在一定偏差,這種偏差會增加研發(fā)失敗的可能性。借助AI模型可以在更早階段考慮動物和人體試驗的關(guān)鍵影響因素,增強ADMET模型的實用性,為后續(xù)環(huán)節(jié)節(jié)省研發(fā)成本。


?(作者單位:中信證券)

(責任編輯:周雨同)

分享至

×

右鍵點擊另存二維碼!

網(wǎng)民評論

{nickName} {addTime}
replyContent_{id}
{content}
adminreplyContent_{id}